
Unsupervised Image Co-segmentation Based on
Cooperative Game

Bo-Chen Lin, Ding-Jie Chen, and Long-Wen Chang

Department of Computer Science, National Tsing Hua University, Taiwan

Abstract. In computer vision, co-segmentation is defined as the task of jointly
segmenting the common objects in a given set of images. Most proposed co-
segmentation algorithms have the assumptions that the common objects are sin-
gletons or with the similar size. In addition, they might assume that the back-
ground features are simple or discriminative. This paper presents a coopera-
tive co-segmentation without these assumptions. In the proposed cooperative co-
segmentation algorithm, each image is treated as a player. By using the cooper-
ative game, heat diffusion, and image saliency, we design a constrained utility
function for each player. This constrained utility function push all players, with
the instinct to maximize their self-utility, to cooperatively define the common-
object labels. We then use cooperative cut to segment the common objects ac-
cording to the common-object labels. Experimental results demonstrate that the
proposed method outperforms the state-of-the-art co-segmentation methods in the
segmentation accuracy of the common objects in the images.

1 Introduction

Image segmentation is a fundamental problem in computer vision. Segmentation parti-
tions an image into several regions that each region shares certain similar appearances.
The goal of segmentation is to simplify the representation of an image for locating the
objects. An important issue of image segmentation is that the regions found by a typical
image segmentation algorithm usually tend to be fragmented or lack semantic mean-
ings. That is, it is difficult to locate the objects from a single image. Therefore, Rother
et al. [1] proposed the idea of co-segmentation that one additional image is provided to
segment both images together to increase the accuracy of the object segmentation.

Recently, co-segmentation has been widely studied in computer vision. The goal of
image co-segmentation refers to segment the similar regions from two or more images.
Although the authors [1–9] proposed some methods to solve this problem, there are still
some restrictions as follows:

1) Some algorithms are supervised.
2) The given images have only one instance of the common object.
3) The backgrounds of the given images are discriminative.

Heat diffusion framework [9–11] is a successful technique in image processing and
computer vision. It can be applied in image segmentation [10], and optical flow esti-
mation [11]. Here we adopt the heat-gain of this framework to measure the segmenta-
tion confidence [9]. In order to deal with images with similar back-ground, we use the
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Fig. 1. The block diagram of the proposed image co-segmentation method.

saliency map [12] in our algorithm to provide an initial guess about the object posi-
tions. Game theory [13] has been widely used as a powerful method to solve problems
in social science, biology, economics, computer science [14, 15], etc. It is the study of
the rational choice of strategies by interacting agents called players. In this paper, we
model the labeling problem as a cooperative game to constrain the labeling procedure.

The co-segmentation problem implies cooperative feasibility for jointly segmenting
the common objects among the images. In this paper, we base on the cooperative game,
heat diffusion, and image saliency to propose a cooperative co-segmentation framework
(see Fig. 1) for overcoming the aforementioned restrictions. In the proposed method,
each image is treated as a player in the heat diffusion system, and her heat gain is treated
as her utility. In the first part, the superpixels with very low saliency value are labeled as
background. Next, all players cooperatively define the common-object superpixels with
their constrained utility function. The remaining unlabeled superpixels are treated as
neutral. In the second part, we apply the cooperative cut [16] with the aid of the labeled
superpixels and thus generate the pixel-level segmentation.

There are three advantages of the proposed cooperative co-segmentation method.
First, the proposed method can discover multiple instances of the common objects.
Secondly, our method is capable of handling images whose backgrounds are similar.
Thirdly, we can segment the common objects with different scales and achieve higher
accuracy than other methods [6, 9].

1.1 Related Work

Existing image co-segmentation works [1, 5, 7, 8] formulated the co-segmentation prob-
lem as a binary labeling problem. Their objectives are minimization of an energy func-
tion with a histogram difference term which derived from the input image pairs. The
histogram difference term penalizes the difference between the foreground histograms
calculated from the input images. Since the histogram difference term is computed be-
tween any two images, the energy function is computationally intractable as the number
of the input images increase. In addition, these methods implicitly assume that only one
object appears in each image.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 2. (a) and (b) are Elephants-safari from the CMU-Cornell iCoseg dataset [2]. (c) the over-
segmentation of (a). (d) the representative superpixels set of (c). (e) The yellow sky region corre-
sponding to the yellow representative superpixel of (d). (f) and (g) are the corresponding saliency
maps of (a) and (b).

Joulin et al. [6] proposed a discriminative clustering based image co-segmentation.
The main idea in this method is to train a supervised classifier for maximal separation
of the foreground and the background. Although it can solve the co-segmentation prob-
lem for up to dozens of images, the segmentation results are not satisfactory for the
number of the input images less than a certain number. Kim et al. [9] proposed the dis-
tributed co-segmentation algorithm based on temperature maximization on anisotropic
heat diffusion. The approach can deal with a large number of input images. Chu et al.
[4] proposed a method that has the ability to segment multiple objects that repeatedly
appear among input images. It incorporates a common pattern discovery algorithm, that
using the SIFT descriptor, with an energy function. The method can achieve high accu-
racy of segmentation when the common objects have high texture complexity.

However, the above unsupervised co-segmentation methods [1, 4–9] require the
testing dataset to be chosen carefully, because their methods would fail for images
with similar background. For example, in Fig. 2(a) and Fig. 2(b), the backgrounds of
images are so similar that the common objects cannot be cut out via unsupervised co-
segmentation methods. Due to this problem, some interactive co-segmentation tech-
niques were proposed [2, 3], which allow users to decide where the foreground or back-
ground is, and then users can guide the output of the co-segmentation algorithm toward
it via scribbles.

2 Cooperative Image Co-segmentation

Given a set of input images, the co-segmentation goal is to segment the common objects
among these images. The block diagram of our method is given in Fig. 1, which is
divided into two parts. The first part consists of four stages, namely over-segmentation
and feature extraction, agglomerative hierarchical clustering, saliency map generation,
and cooperative co-segmentation model. In this part, the goal is to label each input
image. We label the images with common-object-label, background-label, and neutral-
label. The neutral-label is just used to denote the unsure regions. In the second part, we
use cooperative cut [16] with the labeled image-regions to obtain the final result.
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2.1 Over-segmentation and Feature Extraction

In order to reduce the computational loading in the following heat diffusion system, we
represent each image as a set of superpixels. We adopt the over-segmentation method
[17] to obtain the regular-size superpixels. Fig. 2(c) shows an example of the over-
segmentation [17] that applied on Fig. 2(a).

After over-segmentation, we need some descriptors to describe each superpixel.
Color and texture descriptors are commonly used in computer vision. The color of a
superpixel can be represented in terms of average color or color histogram. Texture
descriptor is used to describe the superpixel in terms of its texture property. Here we
simply represent each superpixel as a 3-dimensional average color vector.

2.2 Agglomerative Hierarchical Clustering

To select the representative superpixels as the candidate heat sources in the following
heat diffusion system, we apply the agglomerative hierarchical clustering [9] to find out
some representative superpixels. Precisely, a set of superpixels with the similar features
will be represented as one representative superpixel. Fig. 2(c) is the superpixel repre-
sentation of Fig. 2(a). A region, for example, the sky in Fig. 2(e), consists of a set of
superpixels of similar features and represented with the yellow representative superpixel
in Fig. 2(d).

2.3 Saliency Map Generation

We assume that the objects in the foreground usually have higher saliency value than
those in background. The saliency detection methods usually focus on identifying the
fixation points that human viewer would focus on at the first glance. Harel et al. [12]
proposed a method of computing bottom-up saliency maps which shows a remarkable
consistency with the deployment of attention of human subjects.

For an input image, the method [12] extracts three kinds of features of each pixel,
thus generate three kinds of feature maps. For each kind of feature map, the method
obtains corresponding activation map by computing Markov chains. Finally, the method
normalizes and averages the three kinds of activation maps to generate the saliency map.
The saliency maps of Fig. 2(a)-(b) are shown as Fig. 2(f)-(g).

2.4 Cooperative Co-segmentation Model

With a heat diffusion system, each image can evaluate the segmentation confidence of
each region with the value of heat gain [9]. In addition, the heat gain is proportional
to this segmentation confidence in a heat diffusion system. The image co-segmentation
goal is to segment the common object region. Intuitively, the common object region
should has as high segmentation confidence, i.e., heat gain, as possible. However, we
observed that a representative superpixel with high heat gain could be the foreground or
the background. In order to label the representative superpixels right on the foreground
as the common object, here we consider the image saliency.
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In image co-segmentation scenario, a superpixel is considered as the common ob-
ject candidate if it has similar appearance with the superpixels from other images. This
means that an image should selects its superpixels as the common object with consider-
ing what are the selected superpixels of other images. This kind of consideration is like
the scenario in game theory, that is, each player choose her best strategy according to
the strategies chosen by other players.

In game theory [13], one assumption is that each player is rational. Namely, each
player maximizes her utility, given the adopted strategies of other players. In coopera-
tive game, each player still need to maximize her utility. However, the designed utility
functions also trigger them to maximize the coalition utility. In this paper, we design
a utility function constrained on the other players’ strategies, self heat gain, and self
image saliency. To begin with labeling, the superpixels with very low saliency value
are regarded as background. Then, all players cooperatively define the common-object-
label via maximizing their constrained utility functions. The remaining unlabeled su-
perpixels are assigned the neutral-label. Finally, we use the cooperative cut [16] with
the label information to finely segment the images.

Heat Diffusion System Each image corresponds to a heat diffusion system while the
images correspond to those systems are coupled together. In each system, there are Ki

heat sources, i.e., representative superpixels.
Given an input image set I . For each input image Ii ∈ I (i = 1, ..., N) consider a

graph Gi = (Vi, Ei) where the node set Vi is the set of superpixels of Ii, and the edge
set Ei connect all pairs of adjacent superpixels in Vi. The heat diffusion system [9] has
the following definitions:

1) Each input image Ii is an insulated heat diffusion system Ti. A heat diffusion sys-
tem Ti contains: (i). a temperature function ui. (ii). an environment node gi with
zero temperate, denoted by ui(gi) = 0. (iii). a heat source node hi with constant
temperate, denoted by ui(hi) = 1.

2) Each node vx in Ti diffuses heat to its neighbors and is connected to an environ-
ment node with constant diffusivity of zvx . The diffusivity between any two nodes
vx, vy ∈ Vi are defined by their Gaussian similarity:

dvx,vy =
{

exp(−γ||f c(vx)− f c(vy)||2), if (vx, vy) ∈ Ei

0, otherwise , (1)

where fc(vx) is the average color of the pixels in vx, γ is a constant parameter.
3) The diffusion equation for vx ∈ Vi is defined as follows:

ui(vx) =
1

avx

∑

(vx,vy)∈Ei

dvyvxui(vy) , (2)

where avx = Σ(vx,vy)∈Ei
dvyvx + zvx is a normalization factor.

4) Assume that the system temperature is zero before putting the heat source hi on vx.
Once putting a heat source hi on vx, the corresponding heat gain δi is computed by

δi(vx) =
∑

(vx,vy)∈Ei

ui(vy). (3)



6 Bo-Chen Lin, Ding-Jie Chen, and Long-Wen Chang

Fig. 3. An example to explain the cooperative behavior conditioned on function π. Each image
Ii has three different regions, and each region can be represented as the corresponding repre-
sentative superpixels vi1 , vi2 , and vi3 . Since the objects usually have higher saliency value than
background, the strategies v11, v12, v21, v22, v31, v32 can pass the saliency function φ in π. Since
any pair from the two strategy sets {v11, v22, v32} and {v12, v21, v31} have similar color features,
the pairs from these two sets can obtain high values of the similarity function ψ. Thus, the strategy
profiles which can pass the π function will belong to {v11, v12}×{v21, v22}×{v31, v32}. How-
ever, the optimal strategy profile is (v11, v22, v32) because it has the largest sum of the pairwise
feature similarities according to the constrained utility function.

Cooperative Label Generation Model We propose a cooperative game model to as-
sign the common-object-label to each image, which is configured as follows:

Players: Given an input image set I , each image Ii (i = 1, ..., N) is regarded as a
player in the game. The superpixels of Ii are separated into Ki clusters with the afore-
mentioned agglomerative hierarchical clustering. The collection of these representative
superpixels of Ii are denoted by Ri.

Strategies: The strategy set of each player Ii is Ri = {vi1 , vi2 , ..., viKi
}. Each

player choose one strategy vi ∈ Ri to put her heat source in one diffusion process.
We denote the strategy profile v of all players as (v1, v2, ..., vN ) ∈ R1×R2× ...×RN .

Preference: We treat the image set I with the common objects as a coalition. In a
cooperative game, each player should takes the strategy with considering what are the
adopted strategies of other players. Thus we define the preference of each player Ii is
represented by the constrained utility function Ui as follows:

Ui(vi|v) = π(vi|v)δi(vi)(
1

|N − 1|
∑

j∈−i

ψ(vi, vj)) , (4)

where −i denotes all players except i. Precisely, the similarity function ψ of any two
representative superpixels vi ∈ Ri, vj ∈ Rj is defined as the Gaussian similarity:

ψ(vi, vj) = exp(−γ||f c(vi)− f c(vj)||2) , (5)

where f c(vi) is the average color of the superpixels vi, and γ is a constant parameter.
Considering with the image saliency, the candidate strategy si of player Ii obeys the
following function:

π(vi|v) =
{

1, if ψ(vi, v−i) > α and φ(vi) > β
0, otherwise , (6)

where α and β are threshold parameters, φ(vi) is the average saliency value of all pixels
in vi. Eq. (6) shows that we only concern the superpixel vi with high saliency value
and with feature similar to other players’ strategies. Fig. 3 shows a simple example to
explain the cooperative behavior conditioned on function π.
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The goal of the cooperative model is to find the optimal strategy profile v* that
maximizes the coalition utility. That is,

v* = argmax
v

(
N∑

i=1

Ui(vi|v)) , (7)

where v = (v1, v2, ..., vN ) ∈ R1 × R2 × ... × RN . In the designed utility function,
the best response of each player Ii is conditioned on not only the heat gain δ of herself
but also the feature similarity ψ comparing with other players’ strategies. It is hard to
calculate the exact optimal strategy profile v* ∈ R1 × R2 × ... × RN . In practice, we
use loopy belief propagation (LBP) [18] to approximate the optimal strategy profile.

The common objects usually represented as several representative superpixels (see
Fig. 2(d)). That is, we need to find more than one optimal strategy profiles v* as
the common-object-label. We summarize the complete label generation as algorithm
1 which based on the greedy method and LBP. In algorithm 1, before assigning the
common-object-label, the background-label is assigned to the representative superpix-
els which have very low saliency values. After assigning the common-object-label, the
neutral-label is assigned to the remaining unlabeled representative superpixels. Notice
that, once a representative superpixel vi is labeled, all the superpixel represented by it
will get the same label.

Algorithm 1 Label Generation
Input: N players: image set {I1, I2, · · · , IN}; Strategy set: each Ii has strategy set Ri =

{vi1 , vi2 , · · · , viKi
}; Parameter set: {α, β}.

Output: Background-label set: VB ; Common-object-label set: VC ; Neutral-label set: VN ;
1: VB = ∅; VC = ∅; VN = ∅;
2: For all vi ∈ Ri, if φ(vi) < β then remove vi from Ri and VB = VB ∪ vi;
3: Construct graph G with node {R1, R2, · · · , RN} and edge {(vi, vj)|vi ∈ Ri, vj ∈ R−i};
4: for all vi ∈ Ri, vj ∈ R−i do
5: if ψ(vi, v−i) > α then
6: define edge weight w(vi, vj) =

δi(vi)ψ(vi,vj)

|N−1| ;
7: else
8: define edge weight w(vi, vj) = 0;
9: end if

10: end for
11: Iteration t = 1;
12: while each Ri is non-empty do
13: v*t ← LBP (G); /* state set of image Ii is Ri */
14: for all Ri do
15: for all vi ∈ Ri, if vi ∈ v*t then remove vi from Ri;
16: end for
17: VC = VC ∪ v*t; t = t + 1;
18: reconstruct graph G with updated Ri as line 3 to line 10;
19: end while
20: return VB , VC , VN = {Ri|i = 1, ..., N}; /* VN : the remaining unlabeled strategies */
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(a) (b) (c) (d) (e) (f)

Fig. 4. The co-segmentation result of the proposed method. Fig. 5(a)-(c) are the input images.
(a)-(c) show the labeled results generated by the proposed cooperative game. The red parts are
the common object labels, the blue parts are the background labels, and the white parts are the
neutral labels. (d)-(f) show the segmentation results after the cooperative cut.

2.5 Cooperative Cut

For the input images, the proposed cooperative co-segmentation generate the corre-
sponding labeled images such as Fig. 4(a)-(c). The remaining problem is to label the
neutral-label regions as the common-object or the background, and thus yielding the
final segmentation results such as Fig. 4(d)-(f). Given some labeled image regions, a
cut-algorithm [16, 19–21] is used to label the remaining unlabeled image regions. In
practice, graph cuts [19–21] is known to shortcut elongated boundaries, especially in
low contrast or shaded region. Thus, Jegelka et al. proposed the cooperative cut [16]
to utilize edge cooperation to selectively reward global features of true boundaries in
the image. It has ability to segment fine structured objects and objects with shading
variation.

In our experiments, we use the cooperative cut [16] with the given common-object
regions and background regions to label the neutral-label regions in the pixel-level. The
parameter setting is the same as [16].

3 Experimental Results

We discuss the experimental results on several image sets for evaluating the perfor-
mance of the proposed cooperative co-segmentation method. The test images are col-
lected from various database such as CMU-Cornell iCoseg dataset [2], MSRC dataset
[22], and ImageNet [23]. We present qualitative and quantitative results of our algo-
rithm. The segmentation accuracy of a given image is measured by the intersection-
over-union metric. The metric defined as Acci = GTi∩Si

GTi∪Si
, where GT is the ground

truth segment, S is the segment obtained by the co-segmentation algorithm.

3.1 Cooperative Behavior

In the proposed cooperative co-segmentation, we designed the constrained utility func-
tion. The effects of the constrained utility function are shown in Fig. 5. Fig. 5(a)-(c) are
the input images. Fig. 5(d)-(f) show the common-object-label results of noncooperative
behavior. That is, the utility function only consider the heat gain and all edges have the
same weight. We can find that each player just chooses the strategy to maximize his own
heat gain. Fig. 5(g)-(i) shows the common-object-label results of the constrained utility
function without considering the saliency maps. Fig. 5(j)-(l) shows the common-object-
label results of the constrained utility function with considering the saliency maps.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 5. Effect of the constrained utility function. (a)-(c) are the input images. (d)-(f) represent
the labeled results of noncooperative behavior. (g)-(i) show the labeled results for cooperative
players without considering the saliency maps. (j)-(l) show the labeled results with considering
the saliency maps.

3.2 Comparison

The parameter α and β, which represent the similarity and saliency threshold respec-
tively, are the only two free parameters in our method. We usually set α = 0.5, β = 0.25
in general condition, and α = 0.8, β = 0.5 for high-variability images. Note that we
use the default parameters to generate the results of [6] and [9]. Precisely, we use the
sixth output image, i.e. the output of function disp draw imgs clust cut of [9] for
comparison.

Fig. 6 to Fig. 9 illustrate some results obtained by the proposed method on a set of
images in different conditions. 1). The images with multiple common objects. 2). The
images with similar backgrounds. 3). The common objects for different scales. 4). The
images with complex backgrounds.

We first evaluated the proposed method on multiple common objects. The result is
shown in Fig. 6. In Fig. 7, these sets of images (iCoseg dataset) are particularly difficult
to segment due to the high similarity on the image background. Thanks to the saliency
map, our result performs much better than [6] and [9]. Fig. 8 shows comparative results
on MSRC dataset. Our method outperforms state-of-the-art co-segmentation methods
[6] and [9]. When the objects among images are with different scales. We can observe
that even if there is enormous size differences among objects, the proposed method still
achieve high accuracy up to 93.7%. Another difficult problem of co-segmentation is
shown in Fig. 9. There is only one common object (i.e. the yellow lemon) among images
but backgrounds are complicated. As shown in the figure, both [6] and [9] cannot recog-
nize the common object, lead to extremely low accuracy. On the contrary, our method
produces the satisfactory results with more than 96% averaged segmentation accuracy
in these images. For more general comparisons, Table 1 shows the comparative results
on the iCoseg dataset. Since the dataset contains images with similar background, our
method can reach higher average accuracy than [6] and [9].
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4 Conclusion

We proposed a cooperative co-segmentation algorithm by using the concepts of co-
operative game, heat diffusion, and image saliency. Our method takes advantage of a
cooperative game model, which enables us to detect the common objects unsupervis-
edly and accurately. We treat images as players in the cooperative game model, and
define the constrained utility function to promote the cooperation on the label estima-
tion. After generating the labeled image, we apply the cooperative cut to precisely seg-
ment each labeled image independently. Compared to other co-segmentation methods,
our method can solve those co-segmentation problems for images with similar or com-
plex background, or images with objects of different scales or numbers. Experimental
results demonstrate that our method outperforms the state-of-the-art co-segmentation
algorithms.

Table 1. Co-segmentation results on the iCoseg dataset

iCoseg Dataset Ours Joulin [6] Kim [9]
Elephants 83.6 19.0 50.2
Kite 75.0 29.2 47.1
Kite panda 85.0 37.9 46.1
Gymnastics1 90.9 47.0 41.5
Gymnastics2 83.9 39.2 41.6
Gymnastics3 86.4 51.8 59.0
Taj Mahal 76.0 30.4 28.4
Stonehenge 70.4 71.9 40.5
Liberty Statue 79.2 45.5 64.5
Skating 86.8 12.6 23.9
Livepool FC 78.2 40.7 36.5
Helicopter 79.6 55.1 6.2
mean accuracy 81.3 40.0 40.5

(a) (b) (c) (d) 79.6% (e) 35.1% (f) 28.5%

(g) 87.1% (h) 90.1% (i) 84.0% (j) 86.7% (k) 90.0% (l) 89.6%

Fig. 6. Multiple common objects. The percentage under each image denotes the segmentation
accuracy. (a)-(c) are the input images. (d)-(f) show the co-segmentation of [6]. (g)-(i) show the
co-segmentation of [9]. (j)-(l) show the proposed cooperative co-segmentation.
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(a) (b) (c) (d) 18.3% (e) 20.3% (f) 18.4%

(g) 40.5% (h) 70.4% (i) 39.8% (j) 83.4% (k) 87.2% (l) 80.2%

Fig. 7. Images with similar backgrounds. The percentage under each image denotes the segmen-
tation accuracy. (a)-(c) are the input images. (d)-(f) show the co-segmentation of [6]. (g)-(i) show
the co-segmentation of [9]. (j)-(l) show the proposed cooperative co-segmentation.

(a) (b) (c) (d) 24.6% (e) 44.6% (f) 65.2%

(g) 17.6% (h) 18.7% (i) 23.7% (j) 87.3% (k) 87.7% (l) 93.7%

Fig. 8. Different-scale common objects. The percentage under each image denotes the segmenta-
tion accuracy. (a)-(c) are the input images. (d)-(f) show the co-segmentation of [6]. (g)-(i) show
the co-segmentation of [9]. (j)-(l) show the proposed cooperative co-segmentation.

(a) (b) (c) (d) 12.4% (e) 15.6% (f) 5.5%

(g) 22.1% (h) 22.0% (i) 0.2% (j) 98.6% (k) 92.1% (l) 97.1%

Fig. 9. Common objects with complicated backgrounds. The percentage under each image de-
notes the segmentation accuracy. (a)-(c) are the input images. (d)-(f) show the co-segmentation
of [6]. (g)-(i) show the co-segmentation of [9]. (j)-(l) show the proposed cooperative co-
segmentation.
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